Bacula Edition Documentation text image transdoc
Search

Main


Console Configuration

General

The Console configuration file is the simplest of all the configuration files, and in general, you should not need to change it except for the password. It simply contains the information necessary to contact the Director or Directors.

For a general discussion of the syntax of configuration files and their resources including the data types recognized by Bacula, please see the Configuration chapter of this manual.

The following Console Resource definition must be defined:


The Director Resource

The Director resource defines the attributes of the Director running on the network. You may have multiple Director resource specifications in a single Console configuration file. If you have more than one, you will be prompted to choose one when you start the Console program.

Director
Start of the Director directives.

Name = <name>
The director name used to select among different Directors, otherwise, this name is not used.

DIRPort = <port-number>
Specify the port to use to connect to the Director. This value will most likely already be set to the value you specified on the --with-baseport option of the ./configure command. This port must be identical to the DIRport specified in the Director resource of the Director's configuration file. The default is 9101 so this directive is not normally specified.

Address = <address>
Where the address is a host name, a fully qualified domain name, or a network address used to connect to the Director.

Password = <password>
Where the password is the password needed for the Director to accept the Console connection. This password must be identical to the Password specified in the Director resource of the Director's configuration file. This directive is required.

HistoryFile = <filename>
Where the filename will be used to store the console command history. By default, the history file is set to $HOME/.bconsole_history

HistoryFileSize = <number-of-lines>
Specify the history file size in lines. The default value is 100.

TLS Enable = <yes|no>

Enable TLS support. If TLS is not enabled, none of the other TLS directives have any effect. In other words, even if you set TLS Require = yes you need to have TLS enabled or TLS will not be used.

TLS PSK Enable = <yes|no>

Enable or Disable automatic TLS PSK support. TLS PSK is enabled by default between all Bacula components. The Pre-Shared Key used between the programs is the Bacula password. If both TLS Enable and TLS PSK Enable are enabled, the system will use TLS certificates.

TLS Require = <yes|no>

Require TLS or TLS-PSK encryption. This directive is ignored unless one of TLS Enable or TLS PSK Enable is set to yes. If TLS is not required while TLS or TLS-PSK are enabled, then the Bacula component will connect with other components either with or without TLS or TLS-PSK

If TLS or TLS-PSK is enabled and TLS is required, then the Bacula component will refuse any connection request that does not use TLS.

TLS Authenticate = <yes|no>
When TLS Authenticate is enabled, after doing the CRAM-MD5 authentication, Bacula will also do TLS authentication, then TLS encryption will be turned off, and the rest of the communication between the two Bacula components will be done without encryption. If TLS-PSK is used instead of the regular TLS, the encryption is turned off after the TLS-PSK authentication step.

If you want to encrypt communications data, use the normal TLS directives but do not turn on TLS Authenticate.

TLS Certificate = <Filename>
The full path and filename of a PEM encoded TLS certificate. It will be used as either a client or server certificate, depending on the connection direction. PEM stands for Privacy Enhanced Mail, but in this context refers to how the certificates are encoded. This format is used because PEM files are base64 encoded and hence ASCII text based rather than binary. They may also contain encrypted information.

This directive is required in a server context, but it may not be specified in a client context if TLS Verify Peer is set to no in the corresponding server context.

Example:

File Daemon configuration file (bacula-fd.conf), Director resource configuration has TLS Verify Peer = no:

  Director {
    Name = bacula-dir
    Password = "password"
    Address = director.example.com
    
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    TLS Verify Peer = no
    TLS CA Certificate File = /opt/bacula/ssl/certs/root_cert.pem
    TLS Certificate = /opt/bacula/ssl/certs/client1_cert.pem
    TLS Key = /opt/bacula/ssl/keys/client1_key.pem
  }

Having TLS Verify Peer = no, means the File Daemon, server context, will not check Director’s public certificate, client context. There is no need to specify TLS Certificate File neither TLS Key directives in the Client resource, director configuration file. We can have the below client configuration in bacula-dir.conf:

  Client {
    Name = client1-fd
    Address = client1.example.com
    FDPort = 9102
    Catalog = MyCatalog
    Password = "password"
    ...
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    TLS CA Certificate File = /opt/bacula/ssl/certs/ca_client1_cert.pem
  }

TLS Key = <Filename>
The full path and filename of a PEM encoded TLS private key. It must correspond to the TLS certificate.

TLS Verify Peer = <yes|no>
Verify peer certificate. Instructs server to request and verify the client's X.509 certificate. Any client certificate signed by a known-CA will be accepted. Additionally, the client's X509 certificate Common Name must meet the value of the Address directive. If the TLSAllowed CN onfiguration directive is used, the client's x509 certificate Common Name must also correspond to one of the CN specified in the TLS Allowed CN directive. This directive is valid only for a server and not in client context. The default is yes.

TLS Allowed CN = <string list>
Common name attribute of allowed peer certificates. This directive is valid for a server and in a client context. If this directive is specified, the peer certificate will be verified against this list. In the case this directive is configured on a server side, the allowed CN list will not be checked if TLS Verify Peer is set to no (TLS Verify Peer is yes by default). This can be used to ensure that only the CN-approved component may connect. This directive may be specified more than once.

In the case this directive is configured in a server side, the allowed CN list will only be checked if TLS Verify Peer = yes (default). For example, in bacula-fd.conf, Director resource definition:

  Director {
    Name = bacula-dir
    Password = "password"
    Address = director.example.com
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    # if TLS Verify Peer = no, then TLS Allowed CN will not be checked.
    TLS Verify Peer = yes
    TLS Allowed CN = director.example.com
    TLS CA Certificate File = /opt/bacula/ssl/certs/root_cert.pem
    TLS Certificate = /opt/bacula/ssl/certs/client1_cert.pem
    TLS Key = /opt/bacula/ssl/keys/client1_key.pem
  }

In the case this directive is configured in a client side, the allowed CN list will always be checked.

  Client {
    Name = client1-fd
    Address = client1.example.com
    FDPort = 9102
    Catalog = MyCatalog
    Password = "password"
    ...
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    # the Allowed CN will be checked for this client by director
    # the client's certificate Common Name must match any of
    # the values of the Allowed CN list
    TLS Allowed CN = client1.example.com
    TLS CA Certificate File = /opt/bacula/ssl/certs/ca_client1_cert.pem
    TLS Certificate = /opt/bacula/ssl/certs/director_cert.pem
    TLS Key = /opt/bacula/ssl/keys/director_key.pem
  }

If the client doesn’t provide a certificate with a Common Name that meets any value in the TLS Allowed CN list, an error message will be issued:

16-Nov 17:30 bacula-dir JobId 0: Fatal error: bnet.c:273 TLS certificate
verification failed. Peer certificate did not match a required commonName
16-Nov 17:30 bacula-dir JobId 0: Fatal error: TLS negotiation failed with FD at
"192.168.100.2:9102".

TLS CA Certificate File = <Filename>
The full path and filename specifying a PEM encoded TLS CA certificate(s). Multiple certificates are permitted in the file. One of TLS CA Certificate File or TLS CA Certificate Dir are required in a server context, unless TLS Verify Peer (see above) is set to no, and are always required in a client context.

TLS CA Certificate Dir = <Directory>
Full path to TLS CA certificate directory. In the current implementation, certificates must be stored PEM encoded with OpenSSL-compatible hashes, which is the subject name's hash and an extension of .0. One of TLS CA Certificate File or TLS CA Certificate Dir are required in a server context, unless TLS Verify Peer is set to no, and are always required in a client context.

TLS DH File = <Directory>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange will be used for the ephemeral keying, allowing for forward secrecy of communications. DH key exchange adds an additional level of security because the key used for encryption/decryption by the server and the client is computed on each end and thus is never passed over the network if Diffie-Hellman key exchange is used. Even if DH key exchange is not used, the encryption/decryption key is always passed encrypted. This directive is only valid within a server context.

To generate the parameter file, you may use openssl:

openssl dhparam -out dh4096.pem -5 4096

An actual example might be:

Director {
  Name = HeadMan
  address = rufus.cats.com
  password = xyz1erploit
}

The ConsoleFont Resource

The ConsoleFont resource is available only in the GNOME version of the console. It permits you to define the font that you want used to display in the main listing window.

ConsoleFont
Start of the ConsoleFont directives.

Name = <name>
The name of the font.

Font = <Pango Font Name>
The string value given here defines the desired font. It is specified in the Pango format. For example, the default specification is:

Font = "LucidaTypewriter 9"

Thanks to Phil Stracchino for providing the code for this feature.

An different example might be:

ConsoleFont {
  Name = Default
  Font = "Monospace 10"
}


The Console Resource

There are three different kinds of consoles, which the administrator or user can use to interact with the Director. These three kinds of consoles comprise three different security levels.

  • The first console type is an anonymous or default console, which has full privileges. There is no console resource necessary for this type since the password is specified in the Director resource. Typically you would use this anonymous console only for administrators.

  • The second type of console is a "named" or "restricted" console defined within a Console resource in both the Director's configuration file and in the Console's configuration file. Both the names and the passwords in these two entries must match much as is the case for Client programs.

    This second type of console begins with absolutely no privileges except those explicitly specified in the Director's Console resource. Note, the definition of what these restricted consoles can do is determined by the Director's conf file.

    Thus you may define within the Director's conf file multiple Consoles with different names and passwords, sort of like multiple users, each with different privileges. As a default, these consoles can do absolutely nothing - no commands what so ever. You give them privileges or rather access to commands and resources by specifying access control lists in the Director's Console resource. This gives the administrator fine grained control over what particular consoles (or users) can do.

  • The third type of console is similar to the above mentioned restricted console in that it requires a Console resource definition in both the Director and the Console. In addition, if the console name, provided on the Name = directive, is the same as a Client name, the user of that console is permitted to use the SetIP command to change the Address directive in the Director's client resource to the IP address of the Console. This permits portables or other machines using DHCP (non-fixed IP addresses) to "notify" the Director of their current IP address.

The Console resource is optional and need not be specified. However, if it is specified, you can use ACLs (Access Control Lists) in the Director's configuration file to restrict the particular console (or user) to see only information pertaining to his jobs or client machine.

You may specify as many Console resources in the console's conf file. If you do so, generally the first Console resource will be used. However, if you have multiple Director resources (i.e. you want to connect to different directors), you can bind one of your Console resources to a particular Director resource, and thus when you choose a particular Director, the appropriate Console configuration resource will be used. See the "Director" directive in the Console resource described below for more information.

Note, the Console resource is optional, but can be useful for restricted consoles as noted above.

Console
Start of the Console resource.

Name = <name>
The Console name used to allow a restricted console to change its IP address using the SetIP command. The SetIP command must also be defined in the Director's conf CommandACL list.

Password = <password>
If this password is supplied, then the password specified in the Director resource of you Console conf will be ignored. See below for more details.

Director = <director-resource-name>
If this directive is specified, this Console resource will be used by bconsole when that particular director is selected when first starting bconsole. I.e. it binds a particular console resource with its name and password to a particular director.

Heartbeat Interval = <time-interval>
This directive is optional and if specified will cause the Console to set a keepalive interval (heartbeat) in seconds on each of the sockets to communicate with the Director. It is implemented only on systems (Linux, ...) that provide the setsockopt TCP_KEEPIDLE function. The default value is zero, which means no change is made to the socket.

CommCompression = <yes|no>

If the two Bacula components (DIR, FD, SD, bconsole) have the comm line compression enabled, the line compression will be enabled. The default value is yes.

In many cases, the volume of data transmitted across the communications line can be reduced by a factor of three when this directive is enabled. In the case that the compression is not effective, Bacula turns it off on a record by record basis.

If you are backing up data that is already compressed the comm line compression will not be effective, and you are likely to end up with an average compression ratio that is very small. In this case, Bacula reports None in the Job report.

TLS Enable = <yes|no>

Enable TLS support. If TLS is not enabled, none of the other TLS directives have any effect. In other words, even if you set TLS Require = yes you need to have TLS enabled or TLS will not be used.

TLS PSK Enable = <yes|no>

Enable or Disable automatic TLS PSK support. TLS PSK is enabled by default between all Bacula components. The Pre-Shared Key used between the programs is the Bacula password. If both TLS Enable and TLS PSK Enable are enabled, the system will use TLS certificates.

TLS Require = <yes|no>

Require TLS or TLS-PSK encryption. This directive is ignored unless one of TLS Enable or TLS PSK Enable is set to yes. If TLS is not required while TLS or TLS-PSK are enabled, then the Bacula component will connect with other components either with or without TLS or TLS-PSK

If TLS or TLS-PSK is enabled and TLS is required, then the Bacula component will refuse any connection request that does not use TLS.

TLS Authenticate = <yes|no>
When TLS Authenticate is enabled, after doing the CRAM-MD5 authentication, Bacula will also do TLS authentication, then TLS encryption will be turned off, and the rest of the communication between the two Bacula components will be done without encryption. If TLS-PSK is used instead of the regular TLS, the encryption is turned off after the TLS-PSK authentication step.

If you want to encrypt communications data, use the normal TLS directives but do not turn on TLS Authenticate.

TLS Certificate = <Filename>
The full path and filename of a PEM encoded TLS certificate. It will be used as either a client or server certificate, depending on the connection direction. PEM stands for Privacy Enhanced Mail, but in this context refers to how the certificates are encoded. This format is used because PEM files are base64 encoded and hence ASCII text based rather than binary. They may also contain encrypted information.

This directive is required in a server context, but it may not be specified in a client context if TLS Verify Peer is set to no in the corresponding server context.

Example:

File Daemon configuration file (bacula-fd.conf), Director resource configuration has TLS Verify Peer = no:

  Director {
    Name = bacula-dir
    Password = "password"
    Address = director.example.com
    
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    TLS Verify Peer = no
    TLS CA Certificate File = /opt/bacula/ssl/certs/root_cert.pem
    TLS Certificate = /opt/bacula/ssl/certs/client1_cert.pem
    TLS Key = /opt/bacula/ssl/keys/client1_key.pem
  }

Having TLS Verify Peer = no, means the File Daemon, server context, will not check Director’s public certificate, client context. There is no need to specify TLS Certificate File neither TLS Key directives in the Client resource, director configuration file. We can have the below client configuration in bacula-dir.conf:

  Client {
    Name = client1-fd
    Address = client1.example.com
    FDPort = 9102
    Catalog = MyCatalog
    Password = "password"
    ...
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    TLS CA Certificate File = /opt/bacula/ssl/certs/ca_client1_cert.pem
  }

TLS Key = <Filename>
The full path and filename of a PEM encoded TLS private key. It must correspond to the TLS certificate.

TLS Verify Peer = <yes|no>
Verify peer certificate. Instructs server to request and verify the client's X.509 certificate. Any client certificate signed by a known-CA will be accepted. Additionally, the client's X509 certificate Common Name must meet the value of the Address directive. If the TLSAllowed CN onfiguration directive is used, the client's x509 certificate Common Name must also correspond to one of the CN specified in the TLS Allowed CN directive. This directive is valid only for a server and not in client context. The default is yes.

TLS Allowed CN = <string list>
Common name attribute of allowed peer certificates. This directive is valid for a server and in a client context. If this directive is specified, the peer certificate will be verified against this list. In the case this directive is configured on a server side, the allowed CN list will not be checked if TLS Verify Peer is set to no (TLS Verify Peer is yes by default). This can be used to ensure that only the CN-approved component may connect. This directive may be specified more than once.

In the case this directive is configured in a server side, the allowed CN list will only be checked if TLS Verify Peer = yes (default). For example, in bacula-fd.conf, Director resource definition:

  Director {
    Name = bacula-dir
    Password = "password"
    Address = director.example.com
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    # if TLS Verify Peer = no, then TLS Allowed CN will not be checked.
    TLS Verify Peer = yes
    TLS Allowed CN = director.example.com
    TLS CA Certificate File = /opt/bacula/ssl/certs/root_cert.pem
    TLS Certificate = /opt/bacula/ssl/certs/client1_cert.pem
    TLS Key = /opt/bacula/ssl/keys/client1_key.pem
  }

In the case this directive is configured in a client side, the allowed CN list will always be checked.

  Client {
    Name = client1-fd
    Address = client1.example.com
    FDPort = 9102
    Catalog = MyCatalog
    Password = "password"
    ...
    # TLS configuration directives
    TLS Enable = yes
    TLS Require = yes
    # the Allowed CN will be checked for this client by director
    # the client's certificate Common Name must match any of
    # the values of the Allowed CN list
    TLS Allowed CN = client1.example.com
    TLS CA Certificate File = /opt/bacula/ssl/certs/ca_client1_cert.pem
    TLS Certificate = /opt/bacula/ssl/certs/director_cert.pem
    TLS Key = /opt/bacula/ssl/keys/director_key.pem
  }

If the client doesn’t provide a certificate with a Common Name that meets any value in the TLS Allowed CN list, an error message will be issued:

16-Nov 17:30 bacula-dir JobId 0: Fatal error: bnet.c:273 TLS certificate
verification failed. Peer certificate did not match a required commonName
16-Nov 17:30 bacula-dir JobId 0: Fatal error: TLS negotiation failed with FD at
"192.168.100.2:9102".

TLS CA Certificate File = <Filename>
The full path and filename specifying a PEM encoded TLS CA certificate(s). Multiple certificates are permitted in the file. One of TLS CA Certificate File or TLS CA Certificate Dir are required in a server context, unless TLS Verify Peer (see above) is set to no, and are always required in a client context.

TLS CA Certificate Dir = <Directory>
Full path to TLS CA certificate directory. In the current implementation, certificates must be stored PEM encoded with OpenSSL-compatible hashes, which is the subject name's hash and an extension of .0. One of TLS CA Certificate File or TLS CA Certificate Dir are required in a server context, unless TLS Verify Peer is set to no, and are always required in a client context.

TLS DH File = <Directory>
Path to PEM encoded Diffie-Hellman parameter file. If this directive is specified, DH key exchange will be used for the ephemeral keying, allowing for forward secrecy of communications. DH key exchange adds an additional level of security because the key used for encryption/decryption by the server and the client is computed on each end and thus is never passed over the network if Diffie-Hellman key exchange is used. Even if DH key exchange is not used, the encryption/decryption key is always passed encrypted. This directive is only valid within a server context.

To generate the parameter file, you may use openssl:

openssl dhparam -out dh4096.pem -5 4096

The following configuration files were supplied by Phil Stracchino. For example, if we define the following in the user's bconsole.conf file (or perhaps the bwx-console.conf file):

Director {
   Name = MyDirector
   DIRport = 9101
   Address = myserver
   Password = "XXXXXXXXXXX"    # no, really.  this is not obfuscation.
}


Console {
   Name = restricted-user
   Password = "UntrustedUser"
}

Where the Password in the Director section is deliberately incorrect, and the Console resource is given a name, in this case restricted-user. Then in the Director's bacula-dir.conf file (not directly accessible by the user), we define:

Console {
  Name = restricted-user
  Password = "UntrustedUser"
  JobACL = "Restricted Client Save"
  ClientACL = restricted-client
  StorageACL = main-storage
  ScheduleACL = *all*
  PoolACL = *all*
  FileSetACL = "Restricted Client's FileSet"
  CatalogACL = DefaultCatalog
  CommandACL = run
}

the user logging into the Director from his Console will get logged in as restricted-user, and he will only be able to see or access a Job with the name Restricted Client Save a Client with the name restricted-client, a Storage device main-storage, any Schedule or Pool, a FileSet named Restricted Client's FileSet, a Catalog named DefaultCatalog, and the only command he can use in the Console is the run command. In other words, this user is rather limited in what he can see and do with Bacula.

The following is an example of a bconsole conf file that can access several Directors and has different Consoles depending on the director:

Director {
   Name = MyDirector
   DIRport = 9101
   Address = myserver
   Password = "XXXXXXXXXXX"    # no, really.  this is not obfuscation.
}

Director {
   Name = SecondDirector
   DIRport = 9101
   Address = secondserver
   Password = "XXXXXXXXXXX"    # no, really.  this is not obfuscation.
}

Console {
   Name = restricted-user
   Password = "UntrustedUser"
   Director = MyDirector
}

Console {
   Name = restricted-user-2
   Password = "A different UntrustedUser"
   Director = SecondDirector
}

The second Director referenced at "secondserver" might look like the following:

Console {
  Name = restricted-user-2
  Password = "A different UntrustedUser"
  JobACL = "Restricted Client Save"
  ClientACL = restricted-client
  StorageACL = second-storage
  ScheduleACL = *all*
  PoolACL = *all*
  FileSetACL = "Restricted Client's FileSet"
  CatalogACL = RestrictedCatalog
  CommandACL = run, restore
  WhereACL = "/"
}

To use the same Console name on both Directors, you must create two bconsole.conf to store the two Director/Console groups.

Console Commands

For more details on running the console and its commands, please see the Bacula Console chapter of the Bacula Enterprise Console manual.


Sample Console Configuration File

An example Console configuration file might be the following:

#
# Bacula Console Configuration File
#
Director {
  Name = HeadMan
  address = "my_machine.my_domain.com"
  Password = Console_password
}