
Bacula Regression
Testing
Bacula Community Version

Bacula
Systems

White
Paper

This document is intended to provide insight into the considera-
tions and processes required to implement regression testing with
the Community Version of Bacula.

Version 1.3, Saturday 15th December, 2018

Copyright (C) 2008-2018, Bacula Systems

All rights reserved.

Contents

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

1 / ??

http://www.baculasystems.com/contactus

Bacula Regression Testing

1

If you decided to install Bacula from source, and want to be as sure as possible that
your self-compiled binaries behave as expected, the regression testing suite included
with the source code is the best way to do so. You do not need to be a developer to
run the regression scripts.
If you installed Bacula from packages, going through the regression tests can be
a reasonable way to ensure that everything behaves as expected and can be an
important part of the pre-production testing routine.
The tests are shell scripts that drive Bacula through bconsole and then typically
compare the input and output with diff, so no particular infrastructure beyond
what you needed to build Bacula and what is part of a typical Unix / Linux system
is required.
To get started, we recommend that you create a directory named bacula, under
which you will put the current source code and the current set of regression scripts.
The directory could have any name you like, though.
Note, all the standard regression scripts run as non-root and can be run on the same
machine as a production Bacula system.
To create the directory structure for the current trunk code and to checkout the
necessary files, do the following (note, we assume you are working in your home
directory in a non-root account):

1. Create a directory to be used for testing
2. Check out from the Bacula git repository into that directory, or use a tar

archive:
• Bacula source code
• Bacula regression suite

If you use the git repository, you can keep the source code and regression suite
up-to-date by fetching from the repository.
If you want to test with SQLite and it is not installed on your system, you will
need to download the latest depkgs release from Source Forge and unpack it into
bacula/depkgs, then simply:
cd bacula/depkgs
make

Note, you can also use PostgreSQL or MySQL for testing; both of them will usually
be available from distribution repositories.
There are two different aspects of regression testing: Running the Regression Tests,
and writing a Regression Test. We will not go into much detail on the latter, though,
as we expect that creating regression test scripts will typically be done by developers
of new features of Bacula, not users.

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

2 / ??

http://www.baculasystems.com/contactus

1.1 Running the Regression Script
There are almost 200 tests and the number increases over time. Each of these tests
checks a particular feature or use case, but in general it’s not very interesting to
run all those tests one by one. Instead, most of the time the overall picture is most
interesting: Do all the tests, or all the ones testing the required features, succeed?
The tests also vary in length, some of them require tape drives, and some need root
permission. It’s also not very interesting to watch tests going on for several hours, so
we have prepared a number of test sets like the standard set that uses disk volumes
and runs under any userid, a small set of tests that write to tape, another set of
tests where you must be root to run them.
Each test is self contained in that it initializes to run Bacula from scratch (i. e. with
a newly created database and an uncluttered configuration). It will also kill any
Bacula session that is currently running. In addition, it uses ports 8101, 8102, and
8103 so that it does not interfere with a production system.

1.2 Setting the Configuration Parameters
All the regression testing configuration is strictly separated from the Bacula source
code, so there is nothing you need to change in the source directory.
The very first time you are going to run the regression scripts, you will need to
create a custom config file for your system which has to be located in the regress
directory. We suggest that you start by:

cd bacula/regress
cp prototype.conf config

Afterwords, you can edit the config file directly, which might look similar to what
we show in listing ??
The contents of the configuration file should contain these items:

BACULA_SOURCE should be the full path to the Bacula source code that you
wish to test. It will be loaded, configured, compiled, and installed with the
"make setup" command, which needs to be done only once each time you
change the source code.

EMAIL should be your email address. Please remember to change this to
something that works for your site!

SMTP_HOST defines where your SMTP server is.

SQLITE_DIR should be the full path to the SQLite package, which must be
built before running a Bacula regression test, if you are using SQLite. This
variable is ignored if you are using MySQL or PostgreSQL.

WHICHDB is used to configure which database to use. Set it to
--with-postgresql, --with-mysql, --with-sqlite3=${SQLITE3_DIR}
or --with-sqlite=${SQLITE_DIR} as needed.
The advantage of using SQLite is that it is totally independent of any
installation you may have running on your system, and there is no special
configuration or authorization that must be done to run it. With both MySQL

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

3 / ??

http://www.baculasystems.com/contactus

(Illustrative material only)

Listing 1.1: Regression Tests Configuration� �
Where to get the source to be tested
BACULA_SOURCE ="${HOME }/ bacula / bacula "

Where to send email !!!!! Change me !!!!!!!
EMAIL =your- name@your - domain .com
SMTP_HOST =" localhost "

Full " default " path where to find sqlite (no quotes !)
SQLITE3_DIR =${HOME }/ bacula / depkgs / sqlite3
SQLITE_DIR =${HOME }/ bacula / depkgs / sqlite

TAPE_DRIVE ="/ dev/nst0"
if you don 't have an autochanger set AUTOCHANGER to /dev/null
AUTOCHANGER ="/ dev/sg0"
For two drive tests -- set to /dev/null if you do not have it
TAPE_DRIVE1 ="/ dev/null"

This must be the path to the autochanger control program including its ↙
→name
AUTOCHANGER_PATH ="/ usr/sbin/mtx"

Set your database here
WHICHDB ="--with- sqlite =${ SQLITE_DIR }"
WHICHDB ="--with- sqlite3 =${ SQLITE3_DIR }"
WHICHDB ="--with- mysql "
WHICHDB ="--with- postgresql "

Set this to "--with-tcp- wrappers " or "-- without -tcp- wrappers "
TCPWRAPPERS ="--with-tcp- wrappers "

Set this to "" to disable OpenSSL support , "--with- openssl =yes"
to enable it , or provide the path to the OpenSSL installation ,
eg "--with- openssl =/ usr/ local "
OPENSSL ="--with- openssl "

You may put your real host name here , but localhost is valid also
and it has the advantage that it works on a non- networked machine
HOST =" localhost "� �

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

4 / ??

http://www.baculasystems.com/contactus

and PostgreSQL, you must pre-install the packages, initialize them and
ensure that you have authorization to access the database and create and
delete tables.

TAPE_DRIVE is the full path to your tape drive. The base set of regression tests
do not use a tape, so this is only important if you want to run the full tests.
Set this to /dev/null if you do not have a tape drive.

TAPE_DRIVE1 is the full path to your second tape drive, if you have one. The
base set of regression tests do not use a tape, so this is only important if you
want to run the full two drive tests. Set this to /dev/null if you do not have
a second tape drive.

AUTOCHANGER is the name of your autochanger control device. Set this to
/dev/null if you do not have an autochanger.

AUTOCHANGER_PATH is the full path including the program name for your
autochanger control program (normally mtx). Leave the default value if you
do not have one.

TCPWRAPPERS defines whether or not you want the ./configure to be
performed with TCP wrappers enabled.

OPENSSL used to enable/disable SSL support for Bacula communications and
data encryption.

HOST is the hostname that it will use when building the scripts. The Bacula
daemons will be named <HOST>-dir, <HOST>-fd, . . . It is also the name of
the machine to connect to the daemons by the network. Hence the name
should either be your real hostname (with an appropriate DNS or
/etc/hosts entry) or localhost as it is in the default file.

bin is the binary program location.

scripts is the bacula scripts location (where database creation script, autochanger
handler, etc. are found).

1.3 Building the Test Bacula
When the configuration is prepared, you can build the Makefile used to create the
Bacula installation for the regression testing suite by entering ./config config
where the second config refers to the name of the configuration file containing
your system parameters. This will build a Makefile from Makefile.in, and you
should not need to do this again unless you want to change the database or other
regression configuration parameter.

1.4 Setting up your SQL engine
If you are using SQLite or SQLite3, there is nothing more to do; you can simply
run the tests as described in the next section.
If you are using MySQL or PostgreSQL, you will need to establish an account with
your database engine for the user name regress and you will need to manually create

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

5 / ??

http://www.baculasystems.com/contactus

a database named regress that can be used by user name regress, which means you
will have to give the user regress sufficient permissions to fully use the database
named regress. There must not be a password required for this access.
You have probably already done this for a production Bacula instance with user name
and database name bacula. If you did not, the manual describes how to do it, and
the scripts in bacula/regress/build/src/cats called create_mysql_database,
create_postgresql_database, grant_mysql_privileges, and grant_postgresql_privileges
may be of a help to you.
Generally, to do the above, you will need to work with root permissions to be able
to create databases and modify permissions within MySQL and PostgreSQL.

1.5 Running the Disk Only Regression
To run the base set of tests using disk volumes, you would do

./do_disk

If you are testing on a non-Linux machine several of the tests may not run. In any
case, as we add new tests, the number will vary. It will take about 1 hour and you
don’t need to be root to run these tests. The result should look similar to what is
shown in figure ??
Alternatively to using the ./do_disk script, you can manually do what it essentially
does by:

make setup
./all-disk-tests
scripts/cleanup

The above will first copy the source code within the regression tree (in directory
regress/build), configure it, and build it. There should be no errors. If there are,
please correct them before continuing. From this point on, as long as you don’t
change the Bacula source code, you should not need to repeat any of the building
steps steps (which make will do correctly, i. e. it will only build the binaries if the
sources have been modified). If you pull down a new version of the source code,
simply run make setup again.
Once Bacula is built, you can run the basic disk only non-root regression test by
entering:

make test

and the tape tests are run with

make full_test

and will create output similar to the one shown in figure ??.

1.6 Other Tests
There are a number of other tests that can be run as well. All the tests are a simple
shell script kept in the regress directory. For example the ”make test“ simply executes
./all-non-root-tests. The other tests, which are invoked by directly running
the script, are:

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

6 / ??

http://www.baculasystems.com/contactus

(Illustrative material only)

� �
Test results
 ===== auto- label -test OK 12:31:33 =====
 ===== backup - bacula -test OK 12:32:32 =====
 ===== bextract -test OK 12:33:27 =====
 ===== bscan -test OK 12:34:47 =====
 ===== bsr-opt-test OK 12:35:46 =====
 ===== compressed -test OK 12:36:52 =====
 ===== compressed - encrypt -test OK 12:38:18 =====
 ===== concurrent -jobs-test OK 12:39:49 =====
 ===== data- encrypt -test OK 12:41:11 =====
 ===== encrypt -bug-test OK 12:42:00 =====
 ===== fifo-test OK 12:43:46 =====
 ===== backup - bacula -fifo OK 12:44:54 =====
 ===== differential -test OK 12:45:36 =====
 ===== four- concurrent -jobs-test OK 12:47:39 =====
 ===== four-jobs-test OK 12:49:22 =====
 ===== incremental -test OK 12:50:38 =====
 ===== query -test OK 12:51:37 =====
 ===== recycle -test OK 12:53:52 =====
 ===== restore2 -by-file-test OK 12:54:53 =====
 ===== restore -by-file-test OK 12:55:40 =====
 ===== restore -disk-seek-test OK 12:56:29 =====
 ===== six-vol-test OK 12:57:44 =====
 ===== span-vol-test OK 12:58:52 =====
 ===== sparse - compressed -test OK 13:00:00 =====
 ===== sparse -test OK 13:01:04 =====
 ===== two-jobs-test OK 13:02:39 =====
 ===== two-vol-test OK 13:03:49 =====
 ===== verify -vol-test OK 13:04:56 =====
 ===== weird - files2 -test OK 13:05:47 =====
 ===== weird - files -test OK 13:06:33 =====
 ===== migration -job-test OK 13:08:15 =====
 ===== migration - jobspan -test OK 13:09:33 =====
 ===== migration - volume -test OK 13:10:48 =====
 ===== migration -time-test OK 13:12:59 =====
 ===== hardlink -test OK 13:13:50 =====
 ===== two-pool-test OK 13:18:17 =====
 ===== fast-two-pool-test OK 13:24:02 =====
 ===== two- volume -test OK 13:25:06 =====
 ===== incremental -2disk OK 13:25:57 =====
 ===== 2 drive - incremental -2disk OK 13:26:53 =====
 ===== scratch -pool-test OK 13:28:01 =====
Total time = 0:57:55 or 3475 secs� �

Figure 1.1: Typical Test Results for Disk Volume Regression Testing

� �
Test results

 ===== Bacula tape test OK =====
 ===== Small File Size test OK =====
 ===== restore -by-file-tape test OK =====
 ===== incremental -tape test OK =====
 ===== four- concurrent -jobs-tape OK =====
 ===== four-jobs-tape OK =====� �

Figure 1.2: Tape Test Results

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

7 / ??

http://www.baculasystems.com/contactus

all_non-root-tests All non-tape tests not requiring root permissions. This is the
standard set of tests, that in general back up some data, restore it, and finally
compare the restored with the original data.

all-root-tests All non-tape tests requiring root permission. These are a relatively
small number of tests that require running as root. The amount of data backed
up can be quite large. For example, one test backs up /usr, another backs
up /etc. One or more of these tests may report errors, which are usually not
critical.

all-non-root-tape-tests All tape test not requiring root. There are currently three
tests: The first two tests use one volume, and the third test requires an
autochanger, and uses two volumes. If you don’t have an autochanger, then
this script will probably produce an error.

all-tape-and-file-tests All tape and file tests not requiring root. This includes
almost everything.

1.7 If a Test Fails
If you one or more tests fail, the line output will be similar to:

!!!!! concurrent-jobs-test failed!!! !!!!!

If you want to determine why the test failed, you will need to rerun the script
with the debug output turned on. You do so by defining the environment variable
REGRESS_DEBUG with commands such as:
REGRESS_DEBUG=1
export REGRESS_DEBUG

Then from the regress directory (all regression scripts assume that you have that
as the current directory), enter:
tests/test-name

where test-name should be the name of a test script – for example: tests/backup-bacula-test.

1.8 Testing Your Distribution
First, make sure that your configuration uses the same catalog backend as your
distribution-provided Bacula. Then you can set the bin and scripts variables in
your config file.
Example:
bin=/opt/bacula/bin
scripts=/opt/bacula/scripts

The ./scripts/prepare-other-loc will tweak the installed regression testing
scripts to use the new binary locations. You will have to run make setup to be able
to use regression binaries again.
$./scripts/prepare-other-loc
$./tests/backup-bacula-test
...

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

8 / ??

http://www.baculasystems.com/contactus

1.9 Running a Single Test
If you wish to run a single test, you can simply do:

cd regress
tests/<name-of-test>

Remember that, if the source code has been updated, you should check out or
download and unpack the current source code and use make to set up the regression
testing environment before running an individual test.

1.10 Writing a Regression Test
Any developer who implements a major new feature should write a regression test
that exercises and validates the new feature. Each regression test is a complete test
by itself. It terminates any running Bacula, initializes the database, starts Bacula,
then runs the test by using the bconsole program.

1.11 Directory Structure
The directory structure of the regression test suite is:

regress - Makefile, scripts to start tests
|------ scripts - Scripts and conf files
|-------tests - All test scripts are here
|
|- - - - - - - - - -- All directories below this point are used
| for testing, but are created from the
| above directories and are removed with
| "make distclean"
|
|------ bin - This is the install directory for
| Bacula to be used for testing
|------ build - Where the Bacula source tree is built
|------ tmp - Most temp files go here
|------ working - Bacula working directory
|------ weird-files - Weird files used in two of the tests.

1.12 Adding a New Test
If you want to write a new regression test, it is best to start with one of the existing
test scripts, and modify it to do the new test.
When adding a new test, be extremely careful about adding anything to any of the
daemons’ configuration files. The reason is that it may change the prompts that
are sent to the console. For example, adding a Pool means that the current scripts,
which assume that Bacula automatically selects a Pool, will now be presented with
a new prompt, so the tests will fail. If you need to enhance the configuration files,
consider making your own versions.

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

9 / ??

http://www.baculasystems.com/contactus

1.13 Running a Test Under The Debugger
You can run a test under the debugger (actually run a Bacula daemon under the
debugger) by first setting the environment variable REGRESS_WAIT with commands
such as:

REGRESS_WAIT=1
export REGRESS_WAIT

Then executing the script. When the script prints the following line:

Start Bacula under debugger and enter anything when ready ...

You start the Bacula component you want to run under the debugger in a different
shell window. For example:

cd .../regress/bin
gdb bacula-sd
(possibly set breakpoints, ...)
run -s -f

Then enter any character in the window with the above message. An error message
will appear saying that the daemon you are debugging is already running, which is
correct, so you should simply ignore the error message.

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

10 / ??

http://www.baculasystems.com/contactus

For More Information
For more information on Bacula Enterprise Edition, or any part of the broad Bacula
Systems services portfolio, visit www.baculasystems.com.

Rev ∶ 2 V. 1.3
Author(s): ARL,KES

Copyright © December 2018 Bacula Systems .www.baculasystems.com/contactus
All trademarks are the property of their respective owners

11 / ??

http://www.baculasystems.com
http://www.baculasystems.com/contactus

